IS61NVP25672
FEATURES
• 100 percent bus utilization
• No wait cycles between Read and Write
• Internal self-timed write cycle
• Individual Byte Write Control
• Single R/W (Read/Write) control pin
• Clock controlled, registered address,
data and control
• Interleaved or linear burst sequence control using
MODE input
• Three chip enables for simple depth expansion
and address pipelining
• Power Down mode
• Common data inputs and data outputs
• CKE pin to enable clock and suspend operation
• JEDEC 100-pin TQFP, 119-ball PBGA, 165-ball
PBGA and 209-ball (x72) PBGA packages
• Power supply:
NVP: Vdd 2.5V (± 5%), Vddq 2.5V (± 5%)
NLP: Vdd 3.3V (± 5%), Vddq 3.3V/2.5V (± 5%)
• JTAG Boundary Scan for PBGA packages
• Industrial temperature available
• Lead-free available
• Leaded option available upon request
DESCRIPTION
The 18 Meg 'NLP/NVP' product family feature high-speed,
low-power synchronous static RAMs designed to provide
a burstable, high-performance, 'no wait' state, device
for networking and communications applications. They
are organized as 256K words by 72 bits, 512K words
by 36 bits and 1M words by 18 bits, fabricated with ISSI's
advanced CMOS technology.
Incorporating a 'no wait' state feature, wait cycles are
eliminated when the bus switches from read to write, or
write to read. This device integrates a 2-bit burst counter,
high-speed SRAM core, and high-drive capability outputs
into a single monolithic circuit.
All synchronous inputs pass through registers are controlled
by a positive-edge-triggered single clock input. Operations
may be suspended and all synchronous inputs ignored
when Clock Enable, CKE is HIGH. In this state the internal
device will hold their previous values.
All Read, Write and Deselect cycles are initiated by the ADV
input. When the ADV is HIGH the internal burst counter
is incremented. New external addresses can be loaded
when ADV is LOW.
Write cycles are internally self-timed and are initiated by
the rising edge of the clock inputs and when WE is LOW.
Separate byte enables allow individual bytes to be written.
A burst mode pin (MODE) defines the order of the burst
sequence. When tied HIGH, the interleaved burst sequence
is selected. When tied LOW, the linear burst sequence is
selected.